DNA sequences of all cells in an organism are essentially identical, but their transcription program is specific, depending on the cell type, developmental stage, age, location, etc. This critical feature of multicellular organisms is achieved through an array of epigenetic signals that are not encoded in the primary DNA sequence. Epigenetic signposts include DNA methylation (addition of a methyl group to a cytosine; Martienssen and Colot 2001), modifications of histones (core proteins that package DNA into chromosomal particles; Grewal & Moazed 2003), and small regulatory RNAs (Großhans & Filipowicz 2008). These signals control the activity of genes and transposable elements in a relatively flexible manner (Rapp & Wendel 2005) by providing differential access to underlying genetic information to modulate the identity of cells.

In addition to the extensive involvement in developmental control and parent-of origin imprinted gene expression (Steimer et al. 2004, Henderson & Jacobsen 2007), epigenetic variants (epialleles) also control the organismic response to environmental conditions. Surprisingly, recent studies in various model organisms – including monozygotic twin humans (Fraga et al. 2005) – have indicated that some epialleles can be inherited.
across generations through mechanisms that are not based on the primary DNA sequence. Accumulating evidence indicates that similarly to controlling cell differentiation within an organism, epigenetics can contribute, even in the absence of genetic or environmental heterogeneity, an additional layer of information that influences heritable phenotypic variation between individuals and evolutionary processes that act on this variation.

This may be particularly true for plants, where redundant copies of many genes are spread across the genomes as a result of ancient whole-genome duplication events (i.e., paleopolyploidization; Soltis et al. 2009) or individual gene duplication. A duplicated genetic background allows for increased levels of epigenetic variation that sorts out possible genetic variants. Moreover, epigenetic response mechanisms may be particularly important for immobile organisms, such as plants, that generally cannot respond within the same generation to environmental stimuli via relocation or behavioral alterations. Indeed, many examples of spontaneous heritable epialleles that demonstrably affect key phenotypic characters, such as pigmentation, floral shape, and pathogen resistance, have been discovered in flowering plants (Jablonka & Raz 2009), reflecting also the characteristically late partitioning of reproductive and vegetative cell lineages in higher plants.

Therefore, epigenetics could significantly improve our understanding of the natural mechanisms underlying phenotypic variation and the response of organisms to environmental change (Richards 2006, Bossdorf et al. 2008). However, epigenetic markers are at present only starting to be investigated in relation to evolutionary questions. We have little understanding regarding even basic questions, such as the extent and structure of epigenetic variation within and among natural populations. Recently, epigenetic markers have started to be used to investigate evolutionary questions related to stabilization of recently formed polyploids and evolutionary success. Several Dactylorhiza allotetraploid (2n = 80) species have been repeatedly formed by hybridization between two broadly defined and geographically widespread parental lineages: the diploid (2n = 40) marsh-orchid, *D. incarnata* (L.) Soó s.l., and the spotted orchid, *D. maculata* (L.) Soó s.l. (including, among others, diploid *D. fuchsii* (Drue) Soó; Heslop-Harrison 1968, Hedrén 1996, Hedrén et al. 2001, Pillon et al., 2007, Hedrén et al. 2008). As a result, the taxonomy of many dactylorchids is widely considered complicated, causing long-standing controversies. The different sibling polyploid taxa can occur sympatrically, but they have different overall ecological requirements and distinct distributions. The full significance of the highly iterative polyploid evolution in this complex is not yet understood. It is intriguing that allotetraploid derivatives of the same progenitor pair can exhibit contrasting morphological and ecological properties that are maintained in spite of partly overlapping distributions.

Examples of such cases include European allotetraploids *D. majalis* (Rchb.) P.F.Hunt & Summerh. s.str., *D. traunsteineri* (Saut. ex Rchb.) Soó s.l. (Fig. 1) and *D. ebudensis* (Wiefl. ex R.M.Bateman & Denholm) P.Delforge, each derived multiple times (except the last, a localized endemic, which has most probably a single origin) from unidirectional hybridization between diploids *D. fuchsii* (in all cases the maternal parent) and *D. incarnata* (Pillon et al., 2007, and references therein). Combining the degree of concerted evolution in the case of *Dactylorhiza* allotetraploids

Dactylorhiza, a genus of temperate terrestrial orchids, has extensively evolved in a reticulate fashion resulting in significant but often subtle morphological and ecological variation that challenges species delimitation. Several *Dactylorhiza* allotetraploid (2n = 80) species have been repeatedly formed by hybridization between two broadly defined and geographically widespread parental lineages: the diploid (2n = 40) marsh-orchid, *D. incarnata* (L.) Soó s.l., and the spotted orchid, *D. maculata* (L.) Soó s.l. (including, among others, diploid *D. fuchsii* (Drue) Soó; Heslop-Harrison 1968, Hedrén 1996, Hedrén et al. 2001, Pillon et al., 2007, Hedrén et al. 2008). As a result, the taxonomy of many dactylorchids is widely considered complicated, causing long-standing controversies. The different sibling polyploid taxa can occur sympatrically, but they have different overall ecological requirements and distinct distributions. The full significance of the highly iterative polyploid evolution in this complex is not yet understood. It is intriguing that allotetraploid derivatives of the same progenitor pair can exhibit contrasting morphological and ecological properties that are maintained in spite of partly overlapping distributions.

Examples of such cases include European allotetraploids *D. majalis* (Rchb.) P.F.Hunt & Summerh. s.str., *D. traunsteineri* (Saut. ex Rchb.) Soó s.l. (Fig. 1) and *D. ebudensis* (Wiefl. ex R.M.Bateman & Denholm) P.Delforge, each derived multiple times (except the last, a localized endemic, which has most probably a single origin) from unidirectional hybridization between diploids *D. fuchsii* (in all cases the maternal parent) and *D. incarnata* (Pillon et al., 2007, and references therein). Combining the degree of concerted evolution in
ITS alleles, and in agreement with the patterns of morphology and ecological preference, *D. majalis* is more derived and genetically homogeneous, inferred to be the oldest of the three allotetraploids and to have passed through glacially induced bottlenecks in southern Eurasia. It has a fairly wide ecological tolerance of soil moisture and occurs at present in damp meadows and fens in western and central Europe, the Baltic region, and northern Russia. In contrast, *D. traunsteineri* is a more recently evolved set of allotetraploids that is more heterogeneous and still maintains both parental ITS alleles (Pillon et al., 2007). It probably originated post-glacially and at present shows a more localized and disjunct distribution in northwestern and central Europe (i.e., Britain, Scandinavia, Alps, and Pyrenees). This may reflect the multiple independent origins of each tetraploid taxon (except *D. ebudensis*) or may provide evidence of local adaptation and/or stronger regional gene flow. However, several expression patterns have been found to be species-specific and clearly discriminate between the allopolyploid species (Paun et al., 2010).

Moreover, epigenetic variation at loci spread across the genome, which was studied using methylation-sensitive amplified polymorphism (MSAP), clearly separates the three allopolyploids studied here (Fig. 2), in stark contrast to patterns of genome-wide genetic data (Hedrén et al., 2001). The MSAP technique is similar to standard AFLP (Vos et al., 1995) but uses two methylation-sensitive restriction isoschizomers (e.g., MspI and HpaII) as frequent cutters in parallel batches (Baurens et al., 2003). The two isoschizomers recognize the same DNA sequence (5' CCGG) but differ in their sensitivity to DNA methylation, so that HpaII and MspI do not recognize the restriction site when the internal, and respectively, external cytosine is methylated. Comparisons of the paired profiles for each individual allow precise assessment of methylation status at each restriction site.

Unexpectedly, methylation status analysis at 332 genome-wide MSAP markers resulted in species-specific patterns and confirm previous hypotheses of their evolutionary history (Heslop-Harrison, 1968; Pillon et al., 2007). Indeed, the migration-induced genetic bottleneck triggered within *D. majalis* by the profound change of climatic conditions during the last glaciation seems to have homogenized methylation status among individuals and left only a
weak within-species geographic differentiation (Fig. 2). As result of its postglacial formation and present disjunct distribution, the genome-wide methylation patterns of *D. traunsteineri* are more heterogeneous and correlate more clearly with geography.

Although containing information from both coding and non-coding DNA regions, the methylation markers studied reflect better gene-expression differences in the three allopolyploid siblings than neutral genetic data (Mantel tests, $r = 0.81$ vs. $r = 0.67$ both significant at $P < 0.01$). Therefore, it seems that habitat preference shapes similar expression patterns in some, but not all, of the independent allopolyploidization events in this group, operating via epigenetic regulatory effects under environmental influence rather than via sequence (genetic) divergence (Paun et al., in press).

To test further our hypothesis of adaptation through selection of epigenetic variants, we have performed scans for outlier epigenetic loci, looking for adaptive epiloci that have been shaped by natural selection. We have used two complementary approaches: 1) multiple univariate logistic regressions between epigenetic data and eco-climatic variables, performed using SAM (Joost et al., 2007); and 2) a Bayesian outlier locus approach as implemented in BayeScan (Foll and Gaggiotti, 2008). The latter approach estimates the posterior probability of each locus being under selection, and it is able to differentiate the type of selection each marker was subjected to (divergent vs. purifying). Within our methylation data, BayeScan identified 23 epiloci as being under divergent selection; SAM pinpointed 14 methylation markers as being adaptive, and ten epiloci were identified by both approaches. For most of the outlier epiloci, their presence-absence patterns correlated with water availability, which seems to be a key ecological factor in driving environmental allopatry within the three allopolyploid species. If maintained over evolutionary timescales, environmental allopatry may effectively limit dispersal between populations.

Figure 2. Principal coordinates analysis (goodness of fit 0.87 at $P = 0.001$) of methylation status of allotetraploid *D. majalis* (black symbols), *D. traunsteineri* (gray symbols), and *D. ebudensis* (open symbols). Geographical provenance is indicated by symbol shapes: squares, N. Pyrenees; diamonds, Britain; triangles, Scandinavia; circles, E. Alps. The dotted line encloses samples from Yorkshire, England, and the dashed line samples from N.W. Scotland.
thus promoting divergence via the stochastic effects of drift (Nosil et al., 2009) and/or further selection. Therefore, epigenetic regulatory processes play a clear role in incipient adaptation and evolution of the allopolyploid Dactylorhiza species by influencing primary phenotypic diversity at the interface between genetics and the environment. The fact that recent evolutionary history is discernible in epigenetic patterns indicates that such markers could be used for investigations in closely related, rapidly radiating groups when genetic markers may fail to provide relevant information.

Acknowledgements. O.P. was funded by an Intra-European Marie Curie Fellowship (EU Comission, MEIF-CT-2007-040494).

Literature Cited